MATH4010 Functional Analysis

Homework 5 suggested Solution

Question 1. Let (x_n) and (y_n) be the sequences in a Hilbert space *H*. Suppose that the limits $\lim \|x_n\|$, $\lim \|y_n\|$ and $\lim \left\|\frac{x_n+y_n}{2}\right\|$ exist and are equal. Show that if (x_n) is convergent, then so is (y_n) .

Solution: By the parallelogram law,

$$
||x_n - y_n||^2 = 2 ||x_n||^2 + 2 ||y_n||^2 - ||x_n + y_n||^2.
$$

Note that

$$
\lim_{n} (2 \|x_n\|^2 + 2 \|y_n\|^2 - \|x_n + y_n\|^2)
$$

= 2 (lim $||x_n||^2$)² + 2 (lim $||y_n||^2$)² – 4 (lim $\left|\frac{x_n + y_n}{2}\right|$)²
= 0

The last equality follows by assumption. Thus, $\lim ||x_n - y_n||^2 = 0$, i.e. $(x_n - y_n)$ converges to 0. Since (x_n) is convergent, so is (y_n) .

Question 2. Fix an element $z \in H$. Define a linear functional φ on *H* by $\varphi(x) = (x, z).$

(i) Show that $\|\varphi\| = \|z\|$.

(ii) Let $w \in H$. Find $dist(w, \ker \varphi)$, the distance between the element w and ker φ . (the answer is in terms of *w* and *z*.)

(iii) Let $H = L^2(\mathbb{T})$ and φ be the functional on H given by $\varphi(f) := \int_{\mathbb{T}} f(z) dz$ for $f \in H$. Let $g \in H$. Find the element $h \in \text{ker } \varphi$ such that $||g - h|| =$ $dist(g, \text{ker}\varphi)$.

Solution:

(i) By the Cauchy-Schwarz Inequality,

$$
|\varphi(x)| = |(x, z)| \le ||x|| ||z||.
$$
 (1)

Hence φ is bounded with $\|\varphi\| \leq \|z\|$. Equality (1) is achieved when $x = z$. Therefore, $\|\varphi\| = \|z\|.$

(ii) If $z = 0$, then ker $\varphi = H$. Therefore, $dist(w, \ker \varphi) = 0$. We suppose that $z \neq 0$ in the following. For each $x \in \ker \varphi$, $|(w, z)| = |(w - x, z) \leq ||w - x|| ||z||$. Thus $||w - x|| \ge \frac{|(w,z)|}{||z||}$, which implies that $dist(w, \ker \varphi) \ge \frac{|(w,z)|}{||z||}$ $\frac{w,z}{\|z\|}$.

Take $D = \frac{(w,z)}{\|z\|^2}$, and denote $y = w - Dz$, we have

$$
\varphi(y) = (w, z) - D||z||^2 = 0.
$$

So $y \in \ker \varphi$ with $||w - y|| = ||Dz|| = \frac{|(w, z)|}{||z||}$ $\frac{w,z}{\|z\|}$. Therefore $dist(w,\ker \varphi) = \frac{|(w,z)|}{\|z\|}$. (iii) Let $g_0 \equiv 1$ be the constant 1 function. Then we note that

$$
(g, g_0) = \int_{\mathbb{T}} g(z) \cdot 1 dz = \varphi(g), \text{ for all } g \in H.
$$

Following from 2(ii), there exists $h \in \text{ker } \varphi$ given by

$$
h = g - \frac{(g, g_0)}{\|g_0\|^2} g_0 = g - \int_{\mathbb{T}} f(z) dz,
$$

such that $||g - h|| = dist(g, \ker \varphi)$.