MATH4010 Functional Analysis

Homework 5 suggested Solution

Question 1. Let (x_n) and (y_n) be the sequences in a Hilbert space H. Suppose that the limits $\lim ||x_n||$, $\lim ||y_n||$ and $\lim \left\|\frac{x_n+y_n}{2}\right\|$ exist and are equal. Show that if (x_n) is convergent, then so is (y_n) .

Solution: By the parallelogram law,

$$||x_n - y_n||^2 = 2 ||x_n||^2 + 2 ||y_n||^2 - ||x_n + y_n||^2$$

Note that

$$\lim_{n \to \infty} (2 \|x_n\|^2 + 2 \|y_n\|^2 - \|x_n + y_n\|^2)$$

= 2 (\lim \|x_n\|)^2 + 2 (\lim \|y_n\|)^2 - 4 \left(\lim \|\frac{x_n + y_n}{2} \|\right)^2
= 0

The last equality follows by assumption. Thus, $\lim ||x_n - y_n||^2 = 0$, i.e. $(x_n - y_n)$ converges to 0. Since (x_n) is convergent, so is (y_n) .

Question 2. Fix an element $z \in H$. Define a linear functional φ on H by $\varphi(x) = (x, z)$.

(i) Show that $\|\varphi\| = \|z\|$.

(ii) Let $w \in H$. Find $dist(w, \ker \varphi)$, the distance between the element w and $\ker \varphi$. (the answer is in terms of w and z.)

(iii) Let $H = L^2(\mathbb{T})$ and φ be the functional on H given by $\varphi(f) := \int_{\mathbb{T}} f(z) dz$ for $f \in H$. Let $g \in H$. Find the element $h \in \ker \varphi$ such that $||g - h|| = dist(g, \ker \varphi)$.

Solution:

(i) By the Cauchy-Schwarz Inequality,

$$|\varphi(x)| = |(x,z)| \le ||x|| ||z||.$$
(1)

Hence φ is bounded with $\|\varphi\| \leq \|z\|$. Equality (1) is achieved when x = z. Therefore, $\|\varphi\| = \|z\|$.

(ii) If z = 0, then ker $\varphi = H$. Therefore, $dist(w, \ker \varphi) = 0$. We suppose that $z \neq 0$ in the following. For each $x \in \ker \varphi$, $|(w, z)| = |(w - x, z) \le ||w - x|| ||z||$. Thus $\|w - x\| \ge \frac{|(w,z)|}{\|z\|}$, which implies that $dist(w, \ker \varphi) \ge \frac{|(w,z)|}{\|z\|}$.

Take $D = \frac{(w,z)}{\|z\|^2}$, and denote y = w - Dz, we have

$$\varphi(y) = (w, z) - D ||z||^2 = 0.$$

So $y \in \ker \varphi$ with $||w - y|| = ||Dz|| = \frac{|(w,z)|}{||z||}$. Therefore $dist(w, \ker \varphi) = \frac{|(w,z)|}{||z||}$. (iii) Let $g_0 \equiv 1$ be the constant 1 function. Then we note that

iii) Let
$$g_0 \equiv 1$$
 be the constant 1 function. Then we note that

$$(g,g_0) = \int_{\mathbb{T}} g(z) \cdot 1dz = \varphi(g), \text{ for all } g \in \mathcal{H}$$

Following from 2(ii), there exists $h \in \ker \varphi$ given by

$$h = g - \frac{(g, g_0)}{\|g_0\|^2} g_0 = g - \int_{\mathbb{T}} f(z) dz,$$

such that $||g - h|| = dist(g, \ker \varphi)$.